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ABSTRACT
We conduct the first systematic study of the effectiveness of Web
Audio API-based browser fingerprinting mechanisms and present
new insights. First,we show that audio fingerprinting vectors, unlike
other prior vectors, reveal an apparent fickleness with some users’
browsers giving away differing fingerprints in repeated attempts.
However, we show that it is possible to devise a graph-based anal-
ysis mechanism to collectively consider all the different fingerprints
left by users’ browsers and thus craft a highly stable fingerprinting
mechanism. Next, we investigate the diversity of audio fingerprints
and compare this with prior fingerprinting techniques. Our results
show that audiofingerprints aremuch less diverse thanother vectors
with only 95 distinct fingerprints among 2093 users. At the same
time, further analysis shows that web audio fingerprinting can po-
tentially bring considerable additive value to existing fingerprinting
mechanisms. For instance, our results show that the addition of web
audio fingerprinting causes a 9.6% increase in entropy when com-
pared to using Canvas fingerprinting alone. We also show that our
results contradict the current security andprivacy recommendations
provided byW3C regarding audio fingerprinting.
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1 INTRODUCTION
Browser fingerprinting presents a grave threat to the privacy of inter-
net users as it allows user tracking even in private browsing modes.
The recent advanced web APIs have tremendously increased the
fingerprintable surface area ofweb browsers. As a result, researchers
have extensively focused on measuring and tracking the evolution
of browser fingerprints obtained by using APIs such as Canvas and
WebGL [6, 10, 16, 29] in order to quantify the scope of the problem.
However, despite being used in the wild since 2016 [7, 9],Web Audio
API-based fingerprinting has remained a notable absence in such
large-scale fingerprint measurement works. There exists no prior
work that systematically measures the effectiveness of variousWeb
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Audio-based fingerprinting techniques and compares themwith ex-
isting fingerprinting techniques to gauge their relative importance.
In this work, we attempt to fill this important knowledge gap.
Contributions.Our paper’s contributions are:
(1) User Study: We conducted the first systematic user study ded-

icated toWeb Audio API-based browser fingerprinting by em-
ploying 2093 users across the world.

(2) Feasibility Analysis:We designed a graph-based fingerprint col-
lation mechanism to overcome an apparent fickleness in the
audio fingerprints and showed that it is feasible to use audio
fingerprints in development of a stable and scalable browser
fingerprinting mechanism.

(3) Privacy Threat Analysis:We presented diversity measures for 7
audio fingerprints. We also showed the relative effectiveness of
these fingerprints in comparison to (and in conjunction with)
other browser fingerprinting vectors such as Canvas, Font and
User-Agent-based fingerprinting. This will help future browser
developers to take informed design decisions regarding privacy
protection.

(4) Impact: Our work revealed an oversight in the description of the
privacy threat posed byWeb Audio fingerprinting inW3C’s doc-
umentation for which we filed an official bug report. Moreover,
we have shared our raw datasets and fingerprinting code base
upon specific requests frommultiple browser vendors (Firefox,
Tor and Brave) for addition into their fingerprinting test-suites.
We also make the code we used for our browser fingerprinting

measurements publicly available1.

2 BACKGROUND& SYSTEMDETAILS
The Web Audio API was first introduced in 2011 [22] in order to
enable synthesis and processing of audio on the web with support
for fine-grained timing controls, real-time sound effects as well as
complex visualizations. The use of theAPI involves the creation of an
“Audio Graph” which is a directed graph built by the users to enable
arbitrarily complex audio modifications. The atomic components
of this graph are the “Audio Nodes” which can represent any audio
modules such as audio sources (files, synthesizers etc.), destinations
(speakers, offline buffers etc.), modifiers and analyzers.

2.1 Audio Fingerprinting Vectors
We will now describe all the audio fingerprinting vectors whose
effectiveness we systematically study in this work. We begin with 3
known audio fingerprinting vectors and then discuss 4 other vectors
that we devised for this study.

Dynamics Compressor (DC). It is one of the two audio fingerprint-
ing methods discovered in the wild in [9]. The audio graph for DC
is in Fig. 1. The method involves the use of an OscillatorNode to

1The URL is https://github.com/nguyenhoangdai/audio_fp_code
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create a periodic audiowaveform in a specific shape and feeding it to
aDCNode. It is often used inmuscial production to reduce distortion
commonly exists in recorded audio samples. The main intuition be-
hind this vector is that theremight exist small identifiable differences
in the way DC is done in different audio hardware/software stacks
of different users. To capitalize on this, this method computes the
hash output of DC as the fingerprint.

Dynamics
Compressor Fingerprint

Triangle Wave,
 10000 HZ

Oscillator Destination

Hash
Buffer

Figure 1: Dynamics Compressor (DC)Method

Fast Fourier Transform (FFT). The other audio fingerprinting
method discovered in [9] is in Fig. 2 where the intuition is to make
use of characteristic differences existing in the Fast Fourier Trans-
formation (FFT) calculations performed by the web browsers when
requested to transform a simple audio signal from time domain to
frequency domain. This is accomplished with the help of an Anal-
yserNode and a ScriptProcessorNode after which the FFT output
is sent to a hash function to produce the final output. Note that this
method sends the audio signal to a GainNodewhose gain (volume)
is set to zero before forwarding to the speakers in order to make the
fingerprinting undetectable to the end user.

Gain = 0

FingerprintTriangle Wave, 
10000 HZ

Oscillator GainNode

A
FFT

Analyser Destination

Hash

Figure 2: Fast Fourier Transform (FFT)Method

Hybrid (DC + FFT). The authors of [9] also developed another
audio fingerprinting method (called “hybrid”) that simply combines
both DC and FFTmethods in an attempt to increase the amount of
“fingerprintability” [28] as is depicted in Fig. 6 in Appendix (Fig. 6).
We obtained the code samples for all these three vectors from [28]
and used them.

New Audio Fingerprinting Vectors. We also wanted to explore the
possibility of being able to improve the known audio fingerprinting
vectors. For this, we built four different vectors by extending the
hybrid (DC + FFT) vector. The intuition behind this to make an at-
tempt to add various complexities to the signals that are used in the
fingerprinting methods and measure if this increases the diversity
of the fingerprints. As this ultimately only caused a marginal impact
on the diversity, we only describe these vectors at a high-level here
and defer the details to Appendix B for interested readers.
The first vector we built wasMerged Signals vector, which mod-

ifies the Hybrid vector by using a combination of four geometric
shaped signals provided by theWeb Audio API instead of a single
shape as described above. Custom Signal is the next vector we built
which uses a custom shaped signal instead of the predefined signal

shapes of the web API. Finally, we also built two more vectors to
see if the process of amplitude or frequency modulation can further
improve the diversity of Hybdrid audio fingerprint vectors. We refer
to these asAmplitude and Frequency Modulation vectors.

2.2 Experimental Setup
We set up a single web page to host the fingerprinting code that
implements all the 7 vectors we discussed above. Alongwith this, we
also included other browser fingerprinting vectors such as Canvas
and JS-basedFontby leveraging code from[1]. For anyfingerprinting
vector to be effective, it needs to have stability which means that the
same user/browser pair should result in the same fingerprint even if
fingerprinted repeatedly. To measure this, we designed our study’s
web page to repeatedly run the same audio fingerprinting code
multiple times. This allowed to us to collect multiple fingerprints for
each vector from each participant and evaluate the stability aspects
of the audio fingerprinting mechanisms. To decide the number of
repetitions, we ran pilot experiments during which we profiled our
code in commoditymachines.We noticed that by setting the number
of iterations to 30, our entire fingerprinting code ran for about 30 to
60 secondson these testmachines. Since this amountof timematched
the planned time for each volunteer in our study, we used 30 as the
number of iterations. As a result, ourweb pagewas set up to collect a
total of 210 audiofingerprints (30 iterations, 7 vectors) fromeachuser.

The fingerprintingwebsite was built with 5.8K lines of TypeScript
code using the Angular 11.0.4 framework and the Cloud Firebase
database.Wealsowrote about 10K lines of Python code for thefinger-
print analysis presented in this paper. The web site is built to run all
the fingerprinting code in the background after informing the visitor
about the study and seeking consent from them in the form of a click.

2.3 Participants
Our study was conducted for 76 days during the months of March to
May2021.During this time,we recruited 2093uniqueparticipants for
our studywith thehelpofAmazon’sMTurkplatform (2064) aswell as
our social circles (29).Wehadaverydiverseparticipantpool covering
asmany as 57 different countries. Among those countries, theUnited
States, India, Brazil and Italy were the most frequent with each of
them having at least 100 participants. From the User-AgentHTTP
headers, we inferred that our participants used different browsers
such as Google Chrome, Mozilla Firefox as well as several Chrome-
based browsers such as Microsoft Edge, Opera, Samsung Internet,
Silk, and Yandex. Firefox was used by about 9.6% of the participants
while the remaining 90.4% all used Chrome-based browsers. Our
study also included all major OS families such asWindows (78.5%),
Android (6.9%), MacOS (9.4%) and Linux (5.2%).

3 FEASIBILITY ANALYSIS
3.1 Preliminary Analysis
When conducting a preliminary analysis of the results for stability,
we observed that theWeb Audio API-based fingerprints have some
“fickleness”with someusers’ browsers leavingmore than20different
fingerprints among the 30 iterations we make for each vector. These
numbers are shown in the “Max.” column of Table 1. This phenom-
enon appears unique to theWeb Audio API-based fingerprinting as
other HTML5 APIs abused for fingerprinting such as Canvas and
WebGL [17] have been shown to be very stable and do not change
unless there is a browser upgrade. Among the “Max.” values, the
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Vector DC FFT Hybrid Custom Merged AM FMSignal Signals

Min. 1 1 1 1 1 1 1

Max. 1 21 18 18 21 26 24

Mean 1.0 1.81 2.08 2.08 2.92 4.28 4.33

Table 1: # Distinct fingerprints across 30 iterations for each
user

Figure 3: CDF and Bar plot for the distribution of distinct
Hybrid (DC+FFT) audio fingerprints.

Dynamics Compressor (DC) vector stands out in the table as it re-
sults in only one stable fingerprint for each of the 2093 users across
all 30 iterations. All the other vectors including the Hybrid vector
are showing varying number of fingerprints (of at least 18 or more)
across different iterations for some of the users. As the FFT is the
only difference between Hybrid and DC vectors (see Section 2.1),
it is likely that FFT calculations are what are causing this apparent
instability in the extracted fingerprints.
At the same time, the other columns in Table 1 which show the

minimum and mean number of fingerprints obtained from a user’s
browser reveal that there are users who only left one fingerprint
among all 30 iterations. It is to be noted that the “Min.” value is 1 for
all rows in the table. Furthermore, the “Max.” value for any row in the
column is only 26 and not 30 even though the number of iterations of
fingerprinting is 30. This shows that there are some fingerprints that
are repeating for every vector across every user. Fig. 3 shows the dis-
tribution of fingerprint numbers for Hybrid audio vector2. It shows
that the number of distinct fingerprints for most users is simply one
or two thus indicating high degree of stability for most users. All of
this shows that there is a degree of stability in all of these vectors.

3.2 Fingerprint Collation
Inspired by the above, we devise a simple graph-based approach to
combine all the various fingerprints in the 30 iterations into a single
fingerprint. For every fingerprinting vector, we build a separate undi-
rected bipartite graph in which every user and every elementary
fingerprint is represented by a node. For example, Fig. 4 represents
a hypothetical graph for a particular vector after collecting 9 ele-
mentary fingerprints (𝑒𝐹𝑃1 to 𝑒𝐹𝑃9) across 4 users (𝑈1 to𝑈4). In this
2The graphs for the remaining five FFT-based vectors are very similar and have been
avoided due to space limitations.

 U1
 U2  U3  U4

eFP1 eFP2

eFP4

eFP3

eFP5 eFP6 eFP7 eFP8 eFP9

Cluster1

Cluster2
(Unique)

Cluster3 
(Unique)

Figure 4: Our approach for collating multiple fingeprints
into a single fingerprint

graph, all fingerprint nodes are connected to all the user nodes that
they were associated with during the fingerprint collection process.
In order to collate the fingerprints, we simply consider each con-
nected component in the graph to be representation of each collated
fingerprint. Thus, the number of connected components is the
number of distinct collated fingerprints and each user in a particular
component can be considered to have the same fingerprint. In our
example, we thus end up with 3 distinct fingerprints for the 4 users
with users𝑈1 and𝑈2 having the same fingerprint while users𝑈3 and
𝑈4 having a unique fingerprint that does not collide with any other
user’s. Thus each connected component can also be considered to
be a cluster of users (user cluster) with colliding fingerprints.
It is to be noted that with our proposed method, as we obtain

fingerprints of more users, new collisions can pop up between users
who were previously considered to be having distinct fingerprints.
For example, consider a new user 𝑈5 who has elementary finger-
prints, 𝑒𝐹𝑃8 and 𝑒𝐹𝑃9. This merges existing second and third user
clusters into one large cluster that make all three users𝑈3,𝑈4,𝑈5
to be considered to have the same colliding fingerprint. This means
that the fingerprinting graph has to be adjusted in a dynamic fash-
ion by the fingerprinter. For this, fingerprinters can rely on prior
works such as [11] that proposed fully online graph algorithms for
dynamic connectivity queries. The algorithm proposed in [11] has
an amortized operation cost of O(log2𝑛) for graph updates and
O(log𝑛/loglog𝑛) for connectivity queries where 𝑛 is the number of
vertices in the graph. Let us assume that a particular fingeprinter
has𝑢 users fingerprinted with a particular vector where the number
of iterations for each user is 𝑘 (note that𝑢 =2093 and 𝑘 =30 in our
study). In the worst case, even if every fingerprint in every iteration
for every user is distinct, the maximum number of nodes in vertices
will be (𝑘 +1)𝑢 as there will be 𝑢 users and 𝑘𝑢 fingerprints. Thus,
the graph update operation cost for a fingerprinter is only O(log2𝑢)
while the query operations cost even less. Thus, we can see that this
approach scales well to even billions of users. Alternatively, one can
also consider utilizing a disjoint-set data structure [25] for storing
and performing audio fingerprint operations efficiently.

3.3 Stability Analysis
We have proposed a fingerprint collation approach in order to aggre-
gate multiple fingerprints that were seen for all FFT-based vectors.
However, the question of whether this approach results in stable
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fingerprints still remains. We attempt to answer this using two mea-
surement approaches below.

Clustering Agreement Scores. For this, we first break down the
fingerprint iterations in our dataset of size 𝑘 (= 30) into multiple
equal-sized subsets of size 𝑠 . Then, for each vector and a particular
valueof𝑠 (<𝑘),we canobtain a clusteringof users using theproposed
fingerprint collation algorithm. For example, consider the value of
𝑠 =10which implies that we break down the elementary fingerprints
obtained during the 30 iterations into 3 disparate subsets each of
size 10. Using only the data from first subset, we obtain a different
clustering of users for each audio fingerprinting vector 𝑣 . We can
then do the same for the other subsets resulting in a total of

⌊
𝑘
𝑠

⌋
clusterings for each vector. We can then use a cluster agreement
measuring algorithm to compare howmuch clusterings from each
of the

⌊
𝑘
𝑠

⌋
different subsets agree with one another. For measuring

cluster agreement, we use the Adjusted Mutual Information (AMI)
metric which is an information theoretic measure for clustering
comparison [18]. We chose AMI as it was shown by researchers
to be a suitable algorithm for comparing clusters of imbalanced
sizes (with small-sized clusters) [23] which is typically the case with
browser fingerprints [16]. TheAMI scores vary between 0 and 1with
1 indicating exact matching of two user clusterings.

We performed these measurements for different values of 𝑠 and
present the average cluster agreement scores across clusters in Fig. 5.
Note that when 𝑠 is not a factor of 𝑘 (=30), we simply consider only
the first

⌊
𝑘
𝑠

⌋
𝑠 iterations which are part of the first 𝑠 subsets and

ignore the last few iterations. For 𝑠 =4, the minimum average value
of the score is 0.986 (for FFT vector) whereas for 𝑠 =15, this value is
0.997 (for Merged Signals vector). The results clearly show that even
for low values of 𝑠 (as long as it is at least two), the audio fingerprints
using our proposed graph-based collation algorithm result in user
clusterings that are highly similar to one another for a given vector
across repeated attempts.

Figure 5: Average cluster agreement scores for different
values of 𝑠 ([1,15]) and different vectors.

Fingerprint Match Scores. It is also vital for a fingerprinter to pin-
point a given visitor to exactly the sameuser’s connected component
(or cluster) generated in a prior visit. This allows fingerprinting to be
consistent across multiple visits of a given user. To measure this, we
first divide the fingerprint iterations into subsets of size 𝑠 (=3,10,15).
For each value of 𝑠 and each vector, we consider the first subset as a
“training set” and use its fingerprints to build a training graph as in

Fig. 4.We then consider the elementary fingerprints from each of the
remaining subsets iteratively for each user and measure howmany
of the users can be mapped to the same cluster that they belong to as
per the graph built from the first subset. Using this simple approach,
we computed the fraction of remaining “user subsets”whichwewere
able to positively point to the right cluster in the training graph. The
results show that even for very small set size such as 𝑠 =3, the lowest
fingerprint match score across all the vectors was only 0.9899. This
score increased to 0.9978 for 𝑠 = 10 thus showing that our method
is able to accurately point the vast majority of users uniquely to
their “original cluster” based on their current fingerprints. Table 6
in Appendix shows the full results.

4 DIVERSITYANALYSIS
Entropy measures are commonly used to measure the diversity and
there by, the “fingerprinting power” of browser fingerprints [10, 14,
16]. We followed the same approach for our study and computed
the Shannon bit entropy as well as normalized entropy for all the
web audio fingerprinting vectors that we studied. We describe the
computation here for clarity. Assume that there exist 𝑛 distinct fin-
gerprints, with𝑢𝑖 (where 𝑖 ∈ [1,𝑛]) denoting number of users in the
study that have the 𝑖th fingerprint and𝑈 denoting total number of
users. We compute bit entropy 𝒆 for a given fingerprinting vector
as 𝑒 =−∑𝑖=𝑛

𝑖=1
𝑢𝑖
𝑈
log2

𝑢𝑖
𝑈

Then, the normalized entropy (𝒆𝒏𝒐𝒓𝒎) is obtained by dividing the
bit entropy by the maximum possible entropy i.e. 𝑒

log2𝑈
in order to

bring it down to a range of 0 to 1. Note that 1 indicates maximum
possible entropy and unique fingerprintability of every user. This
normalized measure enables comparison between fingerprint fin-
gerprinting measures of various studies even if the number of users
in the study is different [10, 16].

The diversity of the 7 audio fingerprint vectors based on utilizing
Web Audio APIs is presented in Table 2. It is to be noted that in order
to compute these measurements, we utilized the graph-based ap-
proach as described previously. Thus, the “Distinct” column counts
the number of clusters in the fingerprint graph while the “Unique”
column counts the number of clusters associated with only a single
user. In order to allow for comparison, in Table 3 we also present the
entropy values of other fingerprinting vectors which were shown
to be effective in prior works. Table 2 shows that FFT-based audio
vectors are more effective at fingerprinting than pure Dynamics
Compressor vector with a normalized Shannon entropy of more
than 0.23. Most of these FFT-based vectors result in 80-85 distinct
fingerprints for the 2093 users with about 40 of them being unique
(i.e. only associated with one user in the dataset). The table shows
that all the diversity values of the FFT-based vectors are very close
to one another thus indicating that the discriminatory cause behind
all these vectors is potentially the FFT operation alone.
The final row of Table 2 considers a combination of all the indi-

vidual audio fingerprints. In order to compute the diversity of the
combination ofmultiple fingerprinting vectors, the following simple
logic is used. Assume, that a user𝑈𝑖 has multiple fingerprints associ-
ated with different vectors such as 𝑓𝑖 ,𝑔𝑖 ,ℎ𝑖 etc. Then, in order to find
the diversity of a combination vector of all these individual vectors,
we simply compute the diversity of tuples: (𝑓𝑖 ,𝑔𝑖 ,ℎ𝑖 , ...) across all
values of 𝑖 . By definition, the diversity of a combination vector will
at least be as much as the diversity of the most diverse component
vector. We can see in Table 2 that the entropy of combinations of
all audio vectors is again close to that of the FFT-based vectors thus
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providing further proof for alignment of all FFT-based vectors.More-
over, we computed the cluster agreement scores between various
audiofingerprint vector clusters and found that all FFT-based vectors
have a very high agreement score (Fig. 9 in Appendix).

Comparing Tables 2 and 3 shows that the diversity of audio finger-
prints is much less than that of other effective fingerprinting vectors
such as Canvas, Fonts and User-Agent header based fingerprints.
This difference can also be seen in terms of number of distinct and
unique fingerprints.

Vectors Distinct Unique Entropy 𝒆𝒏𝒐𝒓𝒎

DC 59 34 1.935 0.175

FFT 73 42 2.593 0.235

Hybrid 84 42 2.692 0.244

Custom Signal 72 41 2.582 0.234

Merged Signals 87 45 2.767 0.251

AM 82 45 2.69 0.244

FM 82 43 2.717 0.246

Combined 95 49 2.803 0.254

Table 2: Diversity of audio fingerprints (2093 users)

Vectors Distinct Unique Entropy 𝒆𝒏𝒐𝒓𝒎

Canvas 352 224 6.109 0.554

Fonts 690 555 7.146 0.648

User-Agent 427 284 6.466 0.586

Table 3: Diversity of other vectors (2093 users)

Comparison with User-Agent fingerprints. The User-Agent (UA)
header is an indicator of the web browser, its version number as well
as the OS being used to visit a web server. Tables 2 and 3 indicate
that the entropy of UA header-based fingerprinting is more than the
entropy of audio fingerprints. On a related note, we noticed that the
“SecurityandPrivacyConsiderations”sectionof theWorldWideWeb
Consoritum’s (W3C) organization’s standards document states that
Web Audio fingerprinting “merely allows deduction of information
already readily available by easier means (User Agent string)” [30].
Given that ours is thefirst systematic studyofweb audiofingerprints,
we wanted to utilize our data to verify this statement.

For this, we first considered the UA strings that were each associ-
atedwithmore than one user in our dataset. Therewere 143 such UA
strings and were seen with 1950 users in total in our study. Of these
143UAs,wenoted that asmany as 90 of themwere spanningmultiple
FFT-based fingerprint clusters3. Together, these accounted for about
1610 of the 1950 users. Further, several of these UAs were associated
with more than 2 fingerprint clusters. For example, 7 UAs were each
associated with at least 5 different Merged Signal fingerprints with
one particular Chrome/Windows UA being associated with as many
as 10 different fingerprints. However, we did not notice any explicit

3This number of 90 is about same for all the 6 FFT-based vectors.

differences between browser families in this behavior with both Fire-
fox and Chrome UAs both getting frequently associated with more
than one audio fingerprint. This clearly shows that unlike what was
mentioned in W3C’s documentation, there are a significant number of
cases where audio fingerprinting reveals more information about users
than User-Agent fingerprinting alone.

Additive Value of Audio Fingerprints. The above showed that web
audio fingerprints have more fingerprinting value beyond simply
recording the User-Agent header. It would be useful to quantify this
additive value that audio fingerprinting can potentially add to exist-
ing powerful fingerprinting schemes. For this, we first consider Can-
vas fingerprinting as it was shown to be one of the most discrimina-
tive fingerprinting techniques previously [16]. We measured the en-
tropy of a “pure” Canvas API-based fingerprinting technique as well
as “Canvas +Audio” fingerprintwhereAudio fingerprint includes an
aggregation of all 7web audio fingerprinting techniques as described
previously and shown in the final row of Table 2. Our measurements
show that “Canvas + Audio” fingerprint has an entropy of 6.699 in
comparison to an entropy of 6.109 for the pure “Canvas” vector thus
showing that audio fingerprinting helps cause a 9.6% increase in the
normalized entropy of Canvas fingerprinting techniques. Similarly, we
also repeated this analysis for “UA + Audio” and saw that it resulted
in a a 9.7% increase from using just UA as a fingerprint thus reaffirming
the additive value of audio fingerprinting to UA fingerprinting.

Mitigations. It is to be noted that Audio fingerprinting (like Can-
vas fingerprinting) is more difficult to defend against unlike other
techniques such as Font and User-Agent fingerprinting. The latter
can be tackled by simply changing fonts/User-Agent headers (using
a browser extension such as [26]) periodically in a browser. How-
ever, combating Canvas andWeb Audio fingerprinting techniques
requires more intricate measures such as the fingerprint random-
ization measures taken up by the Brave Browser recently [3, 13]
which can have considerable computational as well as compatibility
side-effects [4, 5]. Our measurement results in this paper can help
browser developers to weigh the privacy risks their user might face
if audio fingerprinting is left undefended against the compatibility
risks of possible defenses and act accordingly.

5 DISCUSSION
Participant Pool Size. Due to financial limitations, we had to re-

strict the size of our study to 2093 users who were mainly recruited
and paid via Amazon’s MTurk platform. However, it is important
to note that the normalized Shannon entropy measures that we ob-
tained for some well known fingerprinting vectors such as Canvas
and User-Agent are in line with the figures from prior studies that
employed even more number of users. For example, the normalized
entropy for User-Agent headers in [16] which employed 118,934
users is 0.580 while it is 0.586 in our study. Furthermore, we also per-
formed additional analysis to see how our dataset sizes can affect the
relative rankingswepresent. For this,we divided our set of users into
4 disparate equal sized subsets and repeated the entropy analysis for
each subset.We noticed that the relative rankings (by 𝑒𝑛𝑜𝑟𝑚) of the 9
fingerprinting vectorswe covered in Tables 2 and 3 remained exactly
the same across all the small subsets as well as our main dataset. This
further confirms that the analysis we present in our paper remains
the same irrespective of the size of the user set that is considered.

Disclosure and Followup. As discussed in Section 4, some of our re-
sults regarding the diversity of audio fingerprints clearly contradict
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the web API standards documentation. We disclosed our results to
theWebAudioWorkingGroup in the form of a bug report in order to
request the documentation’s “Security and Privacy Considerations”
subsection [30]beupdated toaccuratelydelineate thepotencyofweb
audiofingerprintingattacks.Afterour reportwassharedwith thema-
jor browser developers, some browser developers (Firefox, Tor and
Brave) expressed interest in the results of our project and provided
feedback on our work. Upon request, we shared our project’s finger-
printing code with them to have it integrated into their test suites.

Causal Factors. During disclosure, some developers hinted that
the fingerprintability ofMath JS [24] is potentially the sole causal fac-
torbehindWebAudiofingerprinting.WebAudioprocessing involves
complexmathematical operations whose implementation difference
can result in an exploitable fingerprinting surface. In order to investi-
gate this further,weperformeda small follow-up studybyemploying
528 users. Our study found that while FFT vectors had an entropy
of 2.3 bits and DC vectors had an entropy of 1.3 bits, MathJS vectors
only had an entropy of about 0.4 bits thus showing that audio finger-
printing goes beyondMathJS fingerprinting.We can also see this dif-
ference in termsof total number of disctinct fingerprints.While there
were only 7 Math JS fingerprints among 528 users, there were 16 dis-
tinct DCWeb Audio fingerprints. These results are shown in Table 4.

Vectors Distinct Unique Entropy 𝒆𝒏𝒐𝒓𝒎

DC 16 4 1.301 0.144

FFT 24 7 2.288 0.253

Hybrid 25 9 2.240 0.248

Math JS 7 2 0.416 0.046

Table 4: Comparison with Math JS fingerprinting to investi-
gate causal factors (528 users).

Surprised by this result, we dug deeper into the results to see if this
difference is uniform across different platforms. The results of this
analysis in Table 5 show that for the most part, there is a one-to-one
correspondence between DC andMath JS fingerprints. For example,
users onWindows/Chrome andWindows/Edge platforms who ac-
count for 80%of all users in this experimenthaveonlya singleDCand
Math JS fingerprint. However, both macOS and Android operating
systems clearly sawmore diversity inWeb Audio fingerprints than
Math JS thus hinting that there are likely other causes behindWeb
Audio fingerprinting beyondMath JS implementation differences on
theseplatforms. Further investigationof the roleof thesebrowser/OS
platform differences as well as other potential factors such as hard-
ware differences, varying CPU load will be pursued as future work.

6 RELATEDWORK
Multiple works have devised browser fingerprinting techniques [6,
17, 20] and studied fingerprint defenses [8, 12, 13, 15, 19, 27]. Many
have also focused on measuring and comparing the effectiveness as
well as evolution of various browser fingerprints [10, 16, 29]. How-
ever, audio fingerprinting measurements have remained a notable
absence in this. Only [9] who first discovered audio fingerprinting
in the wild and [13] have briefly touched upon diversity aspects of
audio fingerprinting with a Dynamics-Compressor (DC) vector by
conducting user studies. However, none of theseworks have focused
on studying the stability of audio fingerprints by using repeated

Platform # Users DC Math JS

Windows/Chrome 393 1 1

macOS/Chrome 30 5 1

Windows/Edge 27 1 1

Windows/Firefox 25 1 3

Android/Chrome 21 5 1

Table 5: Comparing number of distinct DC and Math JS
fingerprints across different platforms (528 users).

fingerprinting attempts across the same user. Further, as theseworks
were not full-fledged studies onWebAudio fingerprinting, they have
not explored alternative audio fingerprint mechanisms (other than
DC and FFT) as we have done here with this paper.
Nevertheless, both [9] (in 2016) and [13] (in 2017) have cited the

entropymeasures obtained with their web audio fingerprinting user
studies. This gave us an opportunity to estimate howweb audio fin-
gerprinting surface has evolved in relation to prior relatedworks.We
computed the normalized entropy for their user studies and present
these values in obtained a value of 0.38 for (DC+FFT vectors) and
0.24 for [13] (DC vector). Our normalized entropy measure of 0.244
(DC+FFT vector) and 0.175 (DC vector) shows that the fingerprint-
ing surface has reduced slightly in the past few years likely due to
privacy protection measures pursued by browser developers such
as standardizing Math JS computations [2].
Our closest related work is [21] by Queiroz et al. as it is the only

other dedicated study on Web Audio fingerprinting. In this work,
the authors manually studied the stability of audio fingerprinting by
usingDCandFFT schematics similar to theonesweused inourpaper
with the help of four personal devices. Unfortunately, based on the
apparent “fickleness” in the fingerprints exhibited by the FFT vectors
in their preliminary study, the authors decided to exclude FFT-based
fingerprints fro and rather only use pure DC fingerprinting vectors
for further evaluation (with 122 devices and 4 separate Oscilla-
torNode signals). However, as we demonstrated with our proposed
graph-based approach, FFT vectors can in deed be used as stable
fingerprinting vectors. Furthermore, we have shown that these have
superior diversity results compared to a pure DC vector yielding an
entropyof 2.593bits versus1.935bits for aDCvector inouruser study.

[21] and other works also do not measure the additive value of
Web Audio fingerprinting in the context of other previously known
fingerprinting vectors. This is vital as it serves as a measurement to
gauge how benefical Web Audio fingerprinting is to an attacker.

Acknowledgements. The authorswould like to thankPeter Snyder,
Simon Mainey, Vassil Roussev and the anonymous reviewers for
providing helpful feedback. This work was partly supported by the
National Science Foundation (NSF) under grant CNS-2126655.

7 CONCLUSION
In this paper, we conducted the first systematic study of effective-
ness ofWebAudio-based browser fingerprinting vectors. Our results
show that audiofingerprints aremuch less diverse thanother vectors
withonly 95distinct fingerprints among2093users.At the same time,
further analysis shows that web audio fingerprinting can potentially
bring considerable additive value (in terms of entropy) to existing
fingerprinting mechanisms.
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A ETHICS
Our study primarily relied on browser fingerprint information col-
lected from real world users. Besides the browser fingerprint data,
no other sensitive user information is collected from the participants.
We also also presented a clear disclosure message to the participants
informing them about browser fingerprint extraction prior to the
beginning of the study. For any visitor to our web page, only after
seeking the consent of the user study participants in the form of
a click, we start collecting browser fingerprint data from the user.
We disclosed our experimental procedure to the IRB board at our
university and sought an exemption from them for our study.

B NEWFINGERPRINTINGVECTORS

Gain = 0

Triangle Wave, 
10000 HZ

Oscillator GainNode

A
Analyser Destination

Dynamics
Compressor

FingerprintFFT Hash

Figure 6: Hybrid (DC + FFT)Method

Along with studying the effectiveness of known audio finger-
printing vectors, we also wanted to see if it is possible to improve
these vectors in order to increase their “fingerprintability” of au-
dio software/hardware stack. For this, we created 4 new vectors by
extending the hybrid (DC + FFT) vector. In all the vectors, we at-
tempted to createmore complicated signals so as to increasediversity
in fingerprints. We describe these below.

Merged Signals. Our first idea in extending the earlier hybrid vec-
tor is to simply use multiple signals instead of the single triangle
signal. This is depicted in Figure 7. Our main idea was to check if
using other shapes of the waves could potentially increase the di-
versity of fingerprints. For this, we used all the four shapes of waves
supported by OscillatorNode (generated in different frequencies).
We thenmerged them together using ChannelMergerNodewhich is
usually used to combine mono audio inputs (such as L,R,C etc) into
a single output channel. The rest of the fingerprinting mechansim
is the same as that of the hybrid method.

Custom Signal. For our second vector, we used the ‘custom’ wave
shape type supported by OscillatorNodewhich allowed us to de-
fine our own wave shape. We used an array of 12 real and imaginary

Oscillators

Triangle Wave,
10000 HZ

Sine Wave,
 440HZ

Square,
1880 HZ 

Sawtooth, 
22000 HZ

Hybrid
 (DC + FFT) FingerprintChannel

Merger

Figure 7: Merged Signals Method

values to define this periodic signal with real values randomly se-
lected between 0 and 1 and imaginary values alternating between
0 and 𝜋/2. It is to be noted that a ‘custom’ wave type was also used
as an input to a DC fingerprinting vector in [21] previously. More
detailed comparison with [21] is presented in Section 6.

Amplitude Modulation (AM). We also wanted to create an Ampli-
tude Modulated (AM) wave signal in order to see if the process of
modulation increases thefingerprint diversity. For this, as depicted in
Figure 8, we generate two waves (triangle and square) and modulate
themwith the help of another generated sine wave as a carrier wave.

Oscillators

Triangle Wave,
440 HZ

Sine Wave,
 10000HZ

Square,
18 HZ 

Hybrid 
(DC + FFT)

Modulation
 Gain = 60

Carrier 
Gain = 1

Modulation
Gain = 30

Fingerprint

Figure 8: AmplitudeModulationMethod

Frequency Modulation (FM). This final method is the same as pre-
vious AMmethod except that we used Frequency Modulation (FM)
instead.

C ADDITIONALRESULTS

Figure 9: Cluster agreement scores between the different
audio fingerprinting vectors.
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Fingerprinting Vectors 𝑠 =15 𝑠 =10 𝑠 =3

DC 1.0 1.0 1.0

FFT 1.0 1.0 0.9942

Hybrid (DC + FFT) 1.0 1.0 0.9952

Custom Signal 0.999 0.9988 0.9969

Merged Signals 1.0 0.9998 0.9953

AM 0.999 0.9983 0.991

FM 0.9981 0.9978 0.9899

Table 6: Fingerprintmatch scores.
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